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ABSTRACT We define some new global invariants of a
fiber bundle with a connection. They are cohomology
classes in the principal fiber bundle that are defined when
certain characteristic curvature forms vanish. In the case
of the principal tangent bundle of a riemannian manifold,
they are invariant under a conformal transformation of
the metric. They give necessary conditions for conformal
immersion of a riemannian manifold in euclidean space.

1. INTRODUCTION

In this announcement, we discuss some real cohomology
classes that arise in the total space of a principal fiber
bundle. These classes, in the cases when they are inter-
esting, depend on a connection in that bundle. We con-

sider, in particular, the principal bundle of a rieman-
nian manifold with the natural riemannian connection.
We show that these classes depend only on the con-

formal structure of the manifold, and moreover that
their integrality is a necessary condition for global con-

formal immersion in euclidean space with certain pre-

scribed codimension.

2. A SPECIAL CASE-RIEMANNIAN 3-MANIFOLDS

To illustrate these ideas, we consider a special case.

Let M be a compact, oriented, 3-dimensional riemann-
ian manifold. Let F(M) be the S0(3) bundle over M
consisting of oriented, orthonormal tangent frames.
Let 0 = (Ofj) and Q = (Qfj) denote the connection and
curvature forms associated to the riemannian connection
in F(M). 0 is a 3X3 skew symmetric matrix of 1-forms
on F(M), and is a 3X3 skew symmetric matrix of 2-
forms on F(M). They are related by the structural
equation

(2.1)
3

dBO j = Q E Oik A Ok.
k = 1

Using these forms, we define Q, a differential 3-form
on F(M) by

1F

Q = 8212 A 013 A 0233-012 A912 -

013 A 013 - On A OQ.

Lemma 2.2. Q is a closed form.

Proof. Direct from 2.1 by calculation.
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Lemma 2.3. fF(M)mQ = 1, where F(M)m is the fiber
over any m £ M.

Proof. F(M)m is equivalent to 80(3), and since Q is
horizontal, QIF(M)m is a non-zero constant multiple of
the volume form on SO(3). The constant 1/8ir2 was
chosen to normalize this integral.

Lemma 2.4. Let x, x' be two global cross sections in
F(M). Then fo% Q-Jf% Q E Z.

Proof. Since M is an oriented 3-manifold, F(M) is
trivial. Thus, up to torsion X' = X + nF(M)m where
n E Z. The result then follows from Lemma 2.3.

Definition. Let X:R -- R/Z be the natural homo-
morphism. We define 4)(M) E R/Z by 4)(M) = X(fxQ),
where x is any global cross section. Lemma 2.4 shows
that 4) is well defined.

Thus, associated to any riemannian 3-manifold, M, is
a point ¢?(M) £ S1. Two important properties of 4) are
the following:

Theorem 2.5. 4)(M) is a conformal invariant. That is,
if M is conformally equivalent to M, then 4(M) =
4)(M).

Theorem 2.6. A necessary condition that M admit a
global conformal immersion in R4 is that 4)(M) = O.

Generalizations of these theorems appear in §5.

Example 2.7. Regard S3 as a Lie group. Given any
y E R/Z we can find a left invariant metric, g, on S3
such that 4)(S3, g) = y.

Example 2.8. Let RP3 denote real projective 3-
space together with its canonical metric. Then 4)(RP3)
= '/2. Thus there exists no global conformal immersion
of RP3 into R4.
The second example shows that 4((M) is a global

geometric obstruction to immersability, since locally
RP3 is isometrically imbeddable in R4, and globally
RP3 is C- immersible in R4.
A property of 4) that seems special to 3-manifolds is

its behavior as a map from conformal structures into
the circle. In fact, let m denote the space of conformal
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structures on a fixed, compact, oriented manifold M.
Then 4):m -* S .

Theorem 2.9. g E m is a critical point of 4) if and only
if (M,g) is locally conformally flat.

Corollary 2.10. Suppose M is simply connected.
Then either 4' has exactly one critical point and M is
diffeomorphic to SI, or 4' has no critical points and M
is not diffeomorphic to S3.

3. PRINCIPAL G-BUNDLES
Let G be a Lie group with Lie algebra 9. Let M be a
compact manifold and E Al a principal fiber bundle
over M with fiber G. Let 0 be a connection on E with
curvature Q. We recall that 0 is a vertical 9-valued 1-
form on E, £ is a horizontal 9-valued 2-form on E, and
both are equivariant under right action by G. They are
related by the structural equation

(3.1) dO = - /2[610b
where [0,0] (x,y) = [0(x),0(y)].

Let I(9) denote the space of polynomials of degree 1
on 9 which are invariant under the adjoint action of G.
Set I(g) = E D I(9). I(9) is a graded algebra. If is
an equivariant differential form on E taking values in
91= 90 ... 0 9 and if P G I(9), then P(q) = Pooi
is a real-valued form on E invariant under right action
by G. If jp is a p-form on E taking values in 91 and (o

is a q-form on E taking values in 98 then in a natural
way A sp is a (p + q)-form on E taking values in

91+8 In particular £1 = 2 A ... A is a 21-form on E
taking values in S1. Thus if P I(9) then P(91) is
a real-valued, invariant, horizontal, 21-form on E. For
background on these notions the reader should consult
[1 ]: We recall the well-known

Theorem 3.2 (Weil-homomorphism). Let P E I1(9).
Then P(51) is closed, and there is a unique closed 21-

form P(£1) on M such that P(Q£) o d7r = P(Q£). More-

over, the element of H21(M,R) defined by P(Q2) is

independent of the connection, 0. Finally, the map thus
defined from I(S) -- H*(M,R) is an algebra homo-

morphism.
We begin with the observation that not only is P(£2)

closed in E but it is exact. In fact, for t E [0,11 set
= t£2 + 1/2(t2 - t) [0,0]. Then define

TP(B) = 1 P(0 A £21-')dt.
TP(0) is a real-valued, invariant, (21 - 1)-form on E,

and

Lemma 3.3. dTP(0) = P(QW).
Proof. Straightforward calculation.

Lemma 3.4. Let E M and M both be principal

G bundles and let so:EE be a bundle map. Let 0 be

a connection on E, O a connection on t, and suppose
that 0 o dep = 0. Then P(Q£) = P(&I") o d~p and TP(0)
- TP(0) o dep.

Proof. Since Q o dep = £ the statements follow im-
mediately.

It is reasonable to ask whether T is the only such
operator. In fact, it is not, but if one insists on nat-
urality it is unique up to an exact remainder.

Lemma 3.5. Let T' be a map that assigns to each
P C I1(9) a differential 21 - 1 form T'P(0) on each
principal G bundle with connection 0. Suppose T' satis-
fies:

(3.6) dT'P(0) = P(O')
(3.7) T' is natural in the sense of Lemma 3.4.

Then for any bundle E, T'P(0) = TP(0) + exact.

Proof. Let EG -a MG be the universal bundle and
classifying space of G. Now EG is ascyclic and so, since
dT'P(0) = P(Q£) = dTP(0), we must have T'P(0) =
TP(0) + exact for any connection on EG. Since any
connection on E may be obtained as the pull back of
one on EG under a bundle map, the lemma follows
from Lemma 3.4).

Since 1(5) is an algebra, it is useful to have

Lemma 3.8. If P C IP(9) and Q E I'(5) then

1) PQ(£21+') = P(91) A Q(98);
2) TPQ(0) = TP(0) A Q(Q8) + exact.

Proof. 1) is a direct calculation. 2) may be easily
proved on the universal bundle and then pulled back
to E. In fact, for any connection 0 on EG
d(TP(0) A Q(98)) = P(91) A Q(Q') =

PQ(£21+8) = d(TPQ(0)).

Thus 2) is true on EG by ascyclicity.

Definition. Let P C I1(9) such that P(f21) =- 0.
Then dTP(0) = 0, and so TP(O) defines an element
TP[0] C H21- (ER). Note that by Lemma 3.5 this
class is independent of which natural operator, T, we
are using.

Example 1. Suppose 21 > dim M. Then P(QW) 0
since it is a horizontal 21-form and the dimension of
the horizontal space equals dim M. Thus TP[0] E
H21- (E,R) is defined. However, the class may not be
independent of connection.

Lemma 3.9. Let 0(s) be a smooth 1-parameter family
of connections on E. Set 0' = d/(ds)(0(s))Io. Then 0'
is a horizontal 9-valued 1-form on E and

d (TP(0(s)))|0o = 1P(0' A 1l21) + exact.
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Proof. This may be calculated directly, or one may
prove the formula first on the universal bundle and pull
it back to E. In the latter case, the calculation is sim-
plified by ascyclicity.

Lemma 3.10. Suppose 21 = dim M + 1; then TP[01
depends on 0. Suppose 21 > dim M + 1; then TP[0] is
independent of 0.

Proof. This follows directly from Lemma 3.9 since
0' is horizontal and thus P(0' A Qll-1) is a horizontal
21- lform, which must be 0 if 21 > dimM + l and in
general is not exact for 21 = dim M + 1.
So far we have only seen the classes TP[0] defined

when P(01) vanished for reasons of dimension. In the
next section it is shown that there are sometimes
geometric reasons why lower dimensional P(21) 0,
and in these cases, as well as when 21 = dim M + l,
the classes TP[0] provide global information about the
connection.

4. GI(n,R) BUNDLES

Let 91(n,R) be the Lie algebra of the full linear group,
Gl(n,R). It consists of all nXn matrices. Let [n/2] de-
note the smallest integer < n/2. For i = l,. . ., [n/2],
let Pi E I2i be the ith pontrjagin polynomial, nor-
malized so that the corresponding cohomology class is
integral, i.e., for any Gl(n,R) bundle E over M with
connection having curvature Q, the form P,(Q2i) lives
over the ith real pontrjagin class of F, normalized to be
in H4i(M,Z). We also define the inverse pontrjagin
polynomials, Pj,

PIi = Pi -Pi_.PpL- ... -PIP Ii-
i= 1,2.

These polynomials also lead to integral classes in M
and are, in fact, the pontrjagin classes of the inverse of
the vector bundle associated to E.

Lemma 4.1. Let E be a Gl(n,R) bundle with connec-
tion 0. Then TP1(0)IGl(n,R) and TP'i(0)ClG(n,R) are
closed. If we set Yi = cohomology class determined by
TPj(0)jGl(n,R) then TP-'(O)JGl(n,R) C -y2.

Proof. Obviously their restriction to the fiber is
closed since their differential is horizontal. The second
statement is immediate from Lemma 3.8.

yi C H4i- (Gl(n,R),R). For n odd, it is well known
that Yi. ... ,Y[n/2] are non-zero and H*(Gl(nR),R) is
isomorphic to the grassmann algebra with these as
generators. For n even, Y[n/2] = 0, and H*(Gl(n,R),R)
is generated by the remaining yi and an (n - 1) class, x.

Lemma 4.2. '/2Yi C H4-i-l(Gl(n,R),Z).

Proof. This is well known. In fact yj is the transgres-
sion of pi, the ith pontrjagin class of the classifying
space. Since pi is integral, yj is integral. Moreover y,

square of the 2i-th Stiefel-Whitney class. But the trans-
gression of a product is 0. For background see [21.
We thus have

Lemma 4.3. If E is a principal Gl(n,R) bundle with
connection 0, and p,(Q2i) 0, then '/2TP1[0lIGl(n,R) C
H4i-1(Gl(n,R),Z). The same is true for P'j.

In general, when TP1 [0] or TP' [0] exist, there is no
reason to expect it, or half of it, to be an integral class
in all of E. However, this is sometimes the case.

Example 2. Let Gn,k denote the grassmann manifold
of oriented n-planes in Rn+k. Let E.,k Gnk be the

canonical Gl(n,R) bundle. Points in En,k are (n + 1)-
tuples (H;bl,. .. ,bn), where H C Gn,k and bl,. .. ,bn is a

basis of H. En,k is equipped with a natural connection
0, with respect to which parallel translation preserves

the natural inner product in the associated n-dim vector
bundle. The importance of this connection lies in the
following:

Fact 4.4. Let M be an n-dimensional riemannian
manifold and let B(M) be the basis bundle of M. B(M)
is a Gl(n,R) bundle equipped with the unique riemann-
ian connection 6. Let h:M -* Rn +k be an isometric
immersion, and let fh:M -- Gn,k be the gauss map.

Then fh is covered by a natural bundle map Fh:B(M)
En and 0 o dFn = f9

Theorem 4.5. Let 0 be the standard connection on

En,k. Then for [k/2] + 1 < i < [(n - 1)/2]

1) P ',(122) _ 0;
2) 1/2TPi[L4] E H4i-1(Enk,Z).

Proof. Since the vector bundle associated to En,k has
a k-dimensional inverse, we know that the cohomology
class in G,,,k corresponding to PI1(Q2i) is 0 for i in this
range. Because 0 is the canonical connection and be-
cause G,,,k is a symmetric space, it is easy to show that
the form P±1(g2i) in Gnk that represents this class is
invariant on Gn,k. But on a symmetric space an invari-
ant, exact form is identically 0. Thus P±,(Q2i) =

PI,(Q2i) dr 0. This shows 1). The proof that '/2TP%.-
[0] is an integral class is fairly lengthy and requires an

analysis of the cohomology ring of En,k and the con-

sideration of complex grassmann and Stiefel manifolds.

5. CONFORMAL INVARIANCE AND CONFORMAL
IMMERSIONS

Let M be an n-dimensional manifold with basis bundle
B(M).

Theorem 5.1. Let gi, g2 be conformally equivalent
riemannian metrics on M and let 0,, 02 be the corre-

sponding riemannian connections on B(M). Let %l, %
denote the respective curvature forms. Then for any

and any P 11(9l(nR))

reduced mod 2 is the transgression of W2j U W20, the
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Corollary 6.2. Let M be a riemannian manifold. Let
0,Q be the riemannian connection and curvature forms
on B(M). Then for any P

1) P(Q() is a conformal invariant;
2) TP[0] is a conformal invariant when P(0l) = 0.

Proof. The corollary is immediate from the theorem.
The proof of the theorem follows from Lemma 3.9 and a
fairly long calculation. Use is made of the fact that the
invariant polynomials on 91(n,R) are generated by
trA 1.

Theorem 5.5. Let M be a riemannian manifold. Let
OY be the riemannian connection and curvature forms
on B(M). Then a necessary condition that M be locally
conformally immersible in Rn+k is that P'j(Q12i) = 0 for
[k/2] + 1 < i < [(n - 1)/2].
Theorem 5.4. A necessary condition that M admit a

global conformal immersion in Rn+k is that P±L(Q2i)
0 and that 1/2TPi [0] be an integral class for [k/2] + 1
< i< [(n -1)/2].
The proof of these theorems is immediate from Corol-

lary 5.2, Theorem 4.5, and Fact 4.4.

Remark 5.5. Since PI,(Q2i) is a 4i form, we know for
dimension reasons that P'I(f12i) = 0 for i > n/4.
Moreover, from Lemma 3.10 we know that for i >
(n + 1)/4, TP'i[0] is independent of connection. In
fact, it may be shown that for i > (n + 1)/4, 1/2TP', [0]
is always an integral class. Thus Theorem 5.3 and 5.4
are important only for i in the range [k/2 ] + 1 < i <
(n + 1)/4. In other words, these theorems are of in-
terest for conformal immersions in codimensions <
n/2.

Remark 5.6. The theorems for riemannian manifolds
have been done in the context of the Gl(n,R) basis
bundle rather than in the 0(n) frame bundle. This was
primarily because the frame bundle changes as the

metric changes and the basis bundle does not. It is thus
awkward to talk about conformally invariant forms and
classes in a changing bundle. In fact, it makes no dif-
ference in that the basis bundle is a deformation re-
tract of the frame bundle. Moreover, the polynomials
Pi and P', exist as well on the Lie algebra of skew
symmetric matrices and the forms and classes P,(02i)
and TP, [0], etc. are defined on the frame bundle and
have the same existence are integrality properties.

Remark 5.7. LetM be a (4k - 1)-dimensional riemann-
ian manifold, and let P = P(P1,P2,... ,Pk) be a poly-
nomial of degree 2k. Then P(J12k) = 0 and TP[0] E
H41-1(B(M),R). These classes are conformal invariants
of M. It is the only case where the class always exists
and yet depends on the metric. For, as we have seen, if
deg P > 2k, TP[0] is independent of connection and
(probably) uninteresting. For deg P < 2k, in general
TP(0) does not exist. One actually needs dim M
= 4k - 1, and not simply odd, since it can be easily
shown that the only polynomials that lead to non-
trivial classes are already polynomials in the {Pi.
Thus the same polynomials that give pontrjagin

numbers for compact 4k-dimensional CO manifolds
give conformally invariant classes in B(M) for (4k -
1)-dimensional riemannian manifolds.

Remark 5.8. In Section 2..., we gave the example
of a compact riemannian 3-manifold. The class in
F(M) defined by the form, Q, is exactly the class
'/2TP1[0], where P1 is interpreted as a polynomial on
the Lie algebra of 0(n) rather than Gl(n,R).
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